Coinfection of SARS-CoV-2 and Influenza A virus increased disease severity, impaired neutralizing antibody, and CD4+ T cell responses

Given the current COVID-19 pandemic, coinfection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared to a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage.
Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses.
Importance The co-circulation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model.
Coinfected mice exhibited increased mortality with a prolonged IAV shedding. Furthermore, joplink.net/mouse-antibodies, coinfected mice showed a higher level of cytokines and chemokines compared to a single infection condition. Interestingly, our data show that coinfected mice showed significantly less amount of virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.

Nanodisc-Mediated Conversion of Virustatic Antiviral Antibody to Disrupt Virus Envelope in Infected Cells

Many antibody-based antivirals, including broadly neutralizing antibodies (bnAbs) against various influenza virus strains, suffer from limited potency. A booster of the antiviral activity of an antibody is expected to facilitate development of antiviral therapeutics. In this study, a nanodisc (ND), a discoidal lipid bilayer encircled by membrane scaffold proteins, is engineered to provide virucidal properties to antibodies, thereby augmenting their antiviral activity.
NDs carrying the Fc-binding peptide sequence form an antibody-ND complex (ANC), which can co-endocytose into cells infected with influenza virus. ANC efficiently inhibits endosome escape of viral RNA by dual complimentary mode of action. While the antibody moiety in an ANC inhibits hemagglutinin-mediated membrane fusion, its ND moiety destroys the viral envelope using free hemagglutinins that are not captured by antibodies.
Providing virus-infected host cells with the ability to self-eliminate by the synergistic effect of ANC components dramatically amplifies the antiviral efficacy of a bnAb against influenza virus. When the efficacy of ANC is assessed in mouse models, administration of ANCs dramatically reduces morbidity and mortality compared to bnAb alone. This study is the first to demonstrate the novel nanoparticle ANC and its role in combating viral infections, suggesting that ANC is a versatile platform applicable to various viruses.

Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity

Even with implementation of current influenza vaccines, influenza still claims up to 500,000 lives worldwide annually, indicating a need for a better vaccine strategy. We have developed a technology to generate unique S60-HA1 pseudovirus nanoparticles (PVNPs) that display the receptor-binding HA1 domains of influenza viruses. Each self-assembled S60-HA1 PVNP consists of a T = 1 icosahedral S60 nanoparticle that resembles the inner shell of norovirus capsid and 60 surface-displayed HA1 antigens that are excellent vaccine targets.
  • Soluble S60-HA1 PVNPs presenting HA1 antigens of H7N9 influenza virus subtypes have been produced efficiently in large amount. Their three-dimensional (3D) structures have been solved by cryogenic electron microscopy.
  • The PVNP-displayed HA1 antigens react with HA-specific antibody, and retain authentic sialic acid binding specificity and hemagglutinate human erythrocytes.
  • The PVNPs are highly immunogenic, eliciting high titers of HA1-specific antibodies in mice and the mouse sera strongly inhibited hemagglutinations of homologous and heterologous influenza virus HA proteins.
  • Therefore, the S60-HA1 PVNPs may provide useful reagents to study influenza viruses and offer a potential new vaccine tactic to fight the deadly influenza disease.

The EDA deficient mouse has Zymbal’s gland hypoplasia and acute otitis externa

In mice, rats, dogs and humans the growth and function of sebaceous glands and eyelid Meibomian glands depend on the ectodysplasin signalling pathway. Mutation of genes encoding the ligand EDA, its transmembrane receptor EDAR, and the intracellular signal transducer EDARADD leads to Hypohidrotic Ectodermal Dysplasia characterised by impaired development of teeth and hair as well as cutaneous glands.
The rodent ear canal has a large auditory sebaceous gland, the Zymbal’s gland, whose function in the health of the ear canal and tympanic membrane has not been determined. We report that the EDA deficient Tabby (EdaTa) mouse, the EDAR deficient mouse (EdarOVE1B/OVE1B) and the EDARADD deficient sparse and wavy hair rat (Edaraddswh/swh) have Zymbal’s gland hypoplasia.
EdaTa mice also have ear canal hypotrichosis and a 25% prevalence of otitis externa at P21. Treatment with agonist anti-EDAR antibodies rescues Zymbal’s glands and ear canal pilosebaceous units. The aetiopathogenesis of otitis externa involves infection with Gram-positive cocci and dosing pregnant and lactating EdaTa females and pups with Enrofloxacin reduces the prevalence of otitis externa. We infer the deficit of sebum is the principal factor in predisposition to bacterial infection and the EdaTa mouse is a potentially useful microbial challenge model for human acute otitis externa, commonly known as swimmer’s ear.

Indirect signal amplification strategy with a universal probe-based lateral flow immunoassay for the rapid quantitative detection of fumonisin B1

Fumonisin B1 (FB1) is a serious threat to the health of humans and animals. Herein, a lateral flow immunoassay based on universal detection probes (goat anti-mouse IgG@Eu) that could combine with any mouse monoclonal antibody was applied to detect FB1 in corn and feed. Compared with that based on direct monoclonal antibody labeling, this assay maintained bioactivity and saved consumption of monoclonal antibodies with the indirect signal amplification effect.
The results indicated that this assay had higher sensitivity with a limit of detection (LOD) of 0.025 and 0.097 ng mL-1 (0.50 and 1.94 ng g-1 based on sample weight) in corn and feed, respectively. The detection range was about 1-50 ng mL-1 (20-1000 ng g-1 based on sample weight). In addition, the evaluation proved that it had good specificity, accuracy, precision, and applicability, and thus was suitable for the rapid and low-cost detection of fumonisin B1.

Rubisco Mouse Polyclonal Antibody

100ul 124 EUR

Rubisco Mouse Polyclonal Antibody

50ul 74 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100ul 319 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100ul 302.4 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

50ul 224.4 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

each 402 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100ul 379.2 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100μg/100μl 255 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100μg/100μl 225 EUR

Rubisco Mouse Polyclonal Antibody(Large Chain)

100μg/100μl 225 EUR

Leave a Reply

Your email address will not be published.